January 2005

6672 Pure Mathematics P2

Mark Scheme

Question Number		Scheme	Marks	
1a)	$\frac{(x-3)(x+2)}{x(x-3)}; = \frac{(x+2)}{x} \text{ or } 1 + \frac{2}{x}$	B1 numerator, B1 denominator; B1 either form of answer	B1,B1,B1	(3)
1b)	$\frac{(x+2)}{x} = x+1 \Rightarrow x^2 = 2$	M1 for equating f(x) to x + 1 and forming quadratic. A1 candidate's correct quadratic	M1 A1√	
	$x = \pm \sqrt{2}$		A1	(3)
2a)	2	Reflected in x - axis $0 < x < 1$ Cusp + coords Clear curve going correct way Ignore curve $x < 0$	M1 A1	(2)
	-2 / V ₂	General shaped and -2 $(1/2, 0)$ Ignore curve $x < 0$	B1 B1	(2)
	-1.0	Rough reflection in $y = x$ (0,1) or 1 on y - axis (-2, 0) or -2 on x - axis and no curve $x < -2$	B1 B1 B1	(3)

Question Number	Scheme		Marks
3a)	$u_2 = (-1)(2) + d = -2 + d$		B1
	$u_3 = (-1)^2(-2+d) + d = -2 + 2d$	Attempting to find u_3 in terms of d	M1
	$u_4 = (-1)^3(-2 + 2d) + d = 2 - d$	u_3 and u_4 correct	A1
	$u_5 = (-1)^4 (2 - d) + d = 2$ * cso	fully correct	A1* (4)
b)	$u_{10} = u_2 = d - 2$ o.e.	their u ₂ must contain d	B1√ (1)
c)	$-2 + 2d = 3(-2 + d) \implies d = 4$	M1 equating their u_3 to their $3u_2$ must contain d	M1 A1 (2)
4a)	(0,4), or $x = 0$ and $y = 4$		B1 (1)
b)	$V = \pi \int x^2 dy$ $x^2 = y - 4 \text{or } x = \sqrt{y - 4}$	attempt use of, must have pi	M1
	$V = (\pi) \int (y - 4) dy$	-M	B1
	$= (\pi) \left[\frac{y^2}{2} - 4y \right]$	attempt to integrate correct integration ignore pi	M1
		correct integration ignore pr	A1
	using limits in a changed form to give	8,4 either way but must subtract	M1
	$\pi[(32-32)-(8-16)]=8\pi$. (c.a.o)		A1
			(6)

Question Number		Scheme	Marks
5a)	$\log 3^x = \log 5$	taking logs	M1
	$x = \frac{\log 5}{\log 3} orx \log 3 = \log 5$		A1
	= 1.46 cao		A1 (3)
b)	$2 = \log_2 \frac{2x+1}{x}$		M1
	$\frac{2x+1}{x} = 4 \text{or equivalent;}$	4	B1
	$2x + 1 = 4x$ $x = \frac{1}{2}$	multiplying by x to get a linear equation	M1
	$\left \begin{array}{c} x-\frac{1}{2} \end{array}\right $		A1 (4)
c)	$\sec x = 1/\cos x$		B1
	$\sin x = \cos x \implies \tan x = 1$	x = 45 use of tan x	M1, A1 (3)

Question Number	Scheme		Marks
6a)	$I = 3x + 2e^x$		B1
	Using limits correctly to give 1 + 2e. (c.a.o.)	must subst 0 and 1 and subtract	M1 A1 (3)
b)	A = (0, 5);	<i>y</i> = 5	B1
	$\frac{dy}{dx} = 2e^x$	attempting to find	B1
	Equation of tangent: $y = 2x + 5$; $c = -2.5$	eq. of tangent and subst in $y = 0$, must be linear equation	M1; A1 (4)
c)	$y = \frac{5x+2}{x+4} \Rightarrow yx+4y=5x+2 \qquad \Rightarrow 4y-2=5x$	putting $y =$ - xy and att. to rearrange to find x .	M1; A1
	$g^{-1}(x) = \frac{4x - 2}{5 - x} \text{or equivalent}$	must be in terms of x	A1 (3)
d)	gf(0) = g(5); =3 att to put 0 into f and	I then their answer into g	M1; A1 (2)

Question Number	Scheme	Marks
7a)	Complete method for DE [e.g. split triangle ADE and sin, or sine or cos rule]	M1
	$DE = 4 \sin \theta * (\text{c.s.o.})$	A1* (2)
b)	P = 2 DE + 2EF or equivalent. With attempt at EF	M1
	$= 8\sin\theta + 4\cos\theta * (c.s.o.)$	A1* (2)
c)	$8\sin\theta + 4\cos\theta = R\sin(\theta + \alpha)$	
	$= R \sin \theta \cos \alpha + R \cos \theta \sin \alpha$	
	Method for R , method for α need to use \tan for 2^{nd} M	M1 M1
	[$R \cos \alpha = 8$, $R \sin \alpha = 4 \tan \alpha = 0.5$, $R = \sqrt{(8^2 + 4^2)}$]	
	$R = 4\sqrt{5}$ or 8.94, $\alpha = 0.464$ (allow 26.6), awrt 0.464	A1 A1 (4)
d)	Using candidate's $R \sin (\theta + \alpha) = 8.5$ to give $(\theta + \alpha) = \sin^{-1} \frac{8.5}{R}$	M1
	Solving to give $\theta = \sin^{-1} \frac{8.5}{R} - \alpha$, $\theta = 0.791$ (allow 45.3)	M1 A1
	Considering second angle: $\theta + \alpha = \pi$ (or 180) – $\sin^{-1} \frac{8.5}{R}$;	M1
	$\theta = 1.42 \text{ (allow 81.6)}$	A1 (5)

Question Number	Scheme		Marks	
8a)	$f'(x) = -\frac{1}{2x^2}; +\frac{1}{x}$ M1 for evid differentiation —no extras		M1A1;A1	
	$f'(x) = 0 \Rightarrow \frac{-1 + 2x}{2x^2} = 0; \Rightarrow x = 0.5$ (or subst	x = 0.5	M1A1 * cso	(5)
b)	$y = 1 - 1 + \ln\left(\frac{1}{4}\right); = -2 \ln 2$ Subst 0.2 value for	5 or their r x in	M1;A1	(2)
	(4.005)			(2)
c)	f(4.905) = < 0 (-0.000955), f(4.915) = > 0 (+0.000874)	evaluate	M1	
	Change of sign indicates root between and correct values to	o 1 sf)	A1	(2)
d)	$\frac{1}{2x} - 1 + \ln\left(\frac{x}{2}\right) = 0; \qquad \Rightarrow 1 - \frac{1}{2x} = \ln\left(\frac{x}{2}\right)$			
	2	use of e to	M1;A1	(2)
e)	$x_1 = 4.9192$		B1	
	$x_2 = 4.9111$, $x_3 = 4.9103$, both, only lose	e one if not 4dp	B1	(2)